Replica-Averaged Metadynamics.
نویسندگان
چکیده
A statistical mechanics description of complex molecular systems involves the determination of ensembles of conformations that represent their Boltzmann distributions. The observable properties of these systems can be then predicted by calculating averages over such ensembles. In principle, given accurate energy functions and efficient sampling methods, these ensembles can be generated by molecular dynamics simulations. In practice, however, often the energy functions are known only approximately and the sampling can be carried out only in a limited manner. We describe here a method that enables to increase simultaneously both the quality of the energy functions and of the extent of the sampling in a system-dependent manner. The method is based on the incorporation of experimental data as replica-averaged structural restraints in molecular dynamics simulations and exploits the metadynamics framework to enhance the sampling. The application to the case of α-conotoxin SI, a 13-residue peptide that has been characterized extensively by experimental measurements, shows that the approach that we describe enables accurate free energy landscapes to be generated. The analysis of these landscapes indicates the presence of a low population state in equilibrium with the native state in which the only aromatic residue of α-conotoxin SI is exposed to the solvent, which is a feature that may predispose the peptide to interact with its partners.
منابع مشابه
Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics.
The characterization of denatured states of proteins is challenging because the lack of permanent structure in these states makes it difficult to apply to them standard methods of structural biology. In this work we use all-atom replica-averaged metadynamics (RAM) simulations with NMR chemical shift restraints to determine an ensemble of structures representing an acid-denatured state of the 86...
متن کاملEnhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration
We review a selection of methods for performing enhanced sampling in 1 molecular dynamics simulations. We consider methods based on collective variable biasing 2 and on tempering, and offer both historical and contemporary perspectives. In collective3 variable biasing, we first discuss methods stemming from thermodynamic integration that 4 use mean force biasing, including the adaptive biasing ...
متن کاملSimultaneous NMR characterisation of multiple minima in the free energy landscape of an RNA UUCG tetraloop.
RNA molecules in solution tend to undergo structural fluctuations of relatively large amplitude and to populate a range of different conformations some of which with low populations. It is still very challenging, however, to characterise the structures of these low populated states and to understand their functional roles. In the present study, we address this problem by using NMR residual dipo...
متن کاملFree energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics.
Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force mole...
متن کاملCorrection to Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2013